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An analysis of thermal conductivity is presented which differs from that of Klemens and of Callaway in 
that it considers explicitly the conduction by both transverse and longitudinal phonons. This approach is 
then used to provide a very good fit to the data on silicon from 1.7 to 1300°K and on germanium from 1.7 
to 1000°K, and is also used to fit the data on isotropically pure germanium. A comparison of the analysis with 
that due to Callaway shows that the same results are obtained in the impurity scattering and boundary 
scattering regions. A discussion of the approximations used in the various analyses is included. A more com­
plete expression for the umklapp scattering relaxation time, valid for materials with a very disperse trans­
verse acoustic phonon spectrum, is derived in an appendix. The question of the validity of the addition of 
inverse relaxation times and the coupling due to normal three-phonon processes is considered in another 
appendix. 

I. INTRODUCTION 

THE thermal conductivity of materials in which 
the heat is carried by phonons, has been qualita­

tively understood for many years. According to the 
early work of Debye and Peierls, the following behavior, 
which is in good agreement with experiment, is to be 
expected: At the lowest temperatures the thermal con­
ductivity K depends on the size and shape of the 
crystal (or crystallites) and increases with temperature 
about as the specific heat. The thermal conductivity 
reaches a maximum and at temperatures above this 
maximum K is limited by the scattering of phonons by 
phonons and is characteristic of the material. Near the 
maximum, K is sensitive to the imperfections and im­
purities in the material. 

In the past few years attempts have been made to 
refine and expand the theory. In order to make qualita­
tive calculations, a number of assumptions must be 
introduced into the general theory. The usual ap­
proach1,2 is to use a relaxation time approximation in 
the Boltzmann equation and then calculate the scatter­
ing cross section by perturbation techniques. Further, 
it is often necessary to assume an isotropic, Debye-like 
phonon spectrum consisting of one (average) acoustic 
branch. Under these conditions it is often possible to 
find reasonably good agreement between theory and 
experiment in certain temperature ranges. 

One of the difficult problems in this approach is that 
of developing expressions for the relaxation times, 
especially those due to three-phonon interactions.1,3'4 

The frequency and temperature dependence of the 
three-phonon relaxation times is strongly dependent on 
the actual phonon branch and of the dispersion in the 
phonon spectrum so that approximated expressions 
may only have validity for certain limited phonons or 

* A preliminary account of this work has been given in Bull. 
Am. Phys. Soc. 8, 207 (1963). 

1 For a general review of the subject, see P. G. Klemens, in 
Solid State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1958), Vol. 7. 

2 P. Carruthers, Rev. Mod. Phys. 33, 92(1961). 
3 P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951). 
4 C. Herring, Phys. Rev. 95, 954 (1954). 

for a limited temperature range.4 Furthermore, these 
scattering processes are not necessarily independent and 
the simple addition of scattering probabilities may not 
be justifiable.3 

Recently, Callaway5 presented a formulation of the 
problem. By assuming a Debye phonon spectrum and 
making several assumptions as to the form of the 
three-phonon scattering times, he derived an expression 
for the low-temperature thermal conductivity in terms 
of several constants which represent the strength of the 
three-phonon scattering. These constants are contained 
in rather formidable integrals so that extensive nu­
merical integration programs are needed. This formu­
lation has been successful in fitting the data on a 
number of materials at low temperatures.5-15 

For several materials such as silicon and germanium 
in which the thermal conductivity has been extensively 
studied, detailed information about the phonon spec­
trum16-18 and phonon density-of-states distribution19 is 
now available. Using these data, it is conceivable that 
some of the restricting assumptions might be elim­
inated. This is what has been attempted in this work. 

The approach used here is to divide the heat flow into 
that carried by transverse phonons and longitudinal 
phonons. While it is straightforward to obtain the 

6 J. Callaway, Phys. Rev. 113, 1046 (1959). 
6 R. O. Pohl, Phys. Rev. 118, 1499 (1960). 
7 J. Callaway and H. C. von Baeyer, Phys. Rev. 100, 1149 

(1960). 
8 A. M. Toxen, Phys. Rev. 122, 450 (1961). 
9 J. Callaway, Phys. Rev. 122, 787 (1961). 
10 J. C. Thompson and B. A. Younglove, J. Phys. Chem. Solids 

20, 146 (1961). 
11 M. V. Klein, Phys. Rev. 123, 1977 (1961). 
12 M. G. Holland and L. J. Neuringer, Proceedings of the Inter­

national Conference on the Physics of Semiconductors, Exeter 1962 
(The Institute of Physics and the Physical Society, London, 
1962), p. 475. 

13 B. K. Agrawal and G. S. Verma, Phys. Rev. 126, 24 (1962). 
14 B. K. Agrawal and G. S. Verma, Physica 28, 599 (1962). 
15 C. T. Walker and R. O. Pohl, Phys. Rev. 131, 1433 (1963). 
16 B. N. Brockhouse and P. K. Iyengar, Phys. Rev. I l l , 747 

(1958). 
17 B. N. Brockhouse, Phys. Rev. Letters 2, 256 (1959). 
18 H. Palevsky, D. J. Hughes, W. Kley, and E. Tunkels, Phys. 

Rev. Letters 2, 258 (1959). 
19 J. C. Phillips, Phys. Rev. 113, 147 (1959). 
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TABLE I. Relaxation times. In these expressions the B's are 
constants, L= the equivalent sample size where li 12 is the sample 
cross section; F is a geometric factor, V is the atomic volume, 
fi is the atomic fraction of the ith. impurity whose mass is Mi, M is 
the mass of an atom of the host lattice, AM—M—Mi, va is an aver­
age phonon velocity, o>2 is the zone boundary value of the trans­
verse acoustical mode. 

Scattering process 

Crystalline boundaries* 

Impurities (mass difference)1* 

Three phonon 
N process0 

Longitudinal 
Transverse 
Longitudinal 
Transverse 

U processes 
Klemensd 

Klemens6 

Dispersive Transverse 

Callawayf 

Klemens* 

Inverse relaxation time 

7T* 

rrl=A<J, 4 = 0 T ) / W 

'- vm 
TTN 1 — BTOJT* ( 

TTN-^BT^Tr^1 

TU-i=Buo>2T* exp(-d/aT) 
TV-i = Buo>T* exp(-0/aT) 

TTU~1 = J3ri7tt2/sinh#,coi < a> < C02, 
x=ilo)/kT 

= 0, w<coi 
TV-^BUOPT* 
Tirx—B'u?T—high tempera­
ture 

* H. B. G. Casimir, Physica 5, 595 (1938) and Refs. 24 and 25. 
t> P. G. Klemens, Proc. Phys. Soc. (London) 68, 1113 (1955). 
• Ref. 4. 
<* Ref. 3. 
• Ref. 1. 
* Ref. 5. 
« Ref. 1. 

propagation velocity of the two modes from elastic 
constant measurements,20 this would not be sufficient 
reason to attempt this type of separation. Greater 
knowledge of the phonon spectrum is needed. 

The materials studied, germanium and silicon, have 
very disperse transverse acoustic modes,16-18 and this 
fact allows the development of an expression for certain 
three-phonon scattering processes, valid over a large 
range of temperature and phonon frequency. However, 
the results indicate that the separation into transverse 
and longitudinal modes is the more important aspect 
of this work and this approach can give insight into 
insufficiencies in the existing thermal conductivity 
formulations even when details of the phonon spectrum 
and phonon scattering processes are lacking. 

II. THEORY 

To develop an expression for the lattice thermal con­
ductivity of a material one begins with a Boltzmann 
equation.1'2'3'21'22 The solution of this integral equation 
is then approximated either by the use of a variational 

20 See, for example, J. deLaunay, Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956), 
Vol. 2. 

21 J. M. Ziman, Electrons and Fhonons (The Clarendon Press, 
Oxford, 1960), Chap. VI. 

22 R. Peierls, Quantum Theory of Solids (The Clarendon Press, 
Oxford, 1955). 

principle and trial functions, or by the use of the relaxa­
tion time concept. There are problems in both ap­
proaches and these have been discussed in detail else­
where.1 -2,21 We use the relaxation time approximation23 

in which the phonon scattering is expressed in terms of 
the relaxation time r(q,X) for the phonon (q,X) with 
q the wave vector and X the polarization. 

If i is a unit vector along a principal crystal axis and 
the temperature gradient AT is along i 

Ki = Z /'(V(r.x-i)2r(q,X)Cph(qlX)dq. (1) 
(2TT)3 x J 

Here vg,\ is the phonon velocity and CPh is the specific 
heat per normal mode for frequency co, 

Cph(x) = kx2e*{ex-1}- (2) 

Here x=ho>/kT and the phonon spectrum relates w to q. 
For the case of an isotropic vQ, 

4x 1 

" 3 (2TT)3 I-
J q 

•9lx*r(«,X)Cph(g,X)/(?>X)dj, (3) 

where f(q,\) is a phonon distribution function which is 
independent of direction. 

In the Debye limit, a)=vq, f(q,\)dq= q2dq= (u>2/vz)da)y 

and we obtain 

\2W x / 
./o 

;ox r(w,X) 

V \ 
Cph(a>,X)co2<2co, (4) 

where coo.x is the maximum frequency for the phonon 
branch X. 

When the scattering processes are independent, the 
scattering probabilities are additive so that 

x =Ey (5) 

where each 77 is the relaxation time for a single scatter­
ing process. The r / s are normally obtained by perturba­
tion techniques. The important scattering times are 
listed in Table I. 

Several points should be made concerning these 
relaxation times. For the boundary scattering term, the 
factor F represents a correction due to both the smooth­
ness of the surface and the finite length to thickness 
ratio of the sample.24,25 In general, all the approaches 
lead to the same expression for thermal conductivity 
at the lowest temperatures. The form of n usually gives 
agreement between theory and experiment of better 
than 50%, and in many analyses, the value of F is 
adjusted to give an exact fit at low temperatures. 

23 The question of the validity of the relaxation time for a single 
mode will not be discussed here. 

24 R. Berman, F. E. Simon, and J. M. Ziman, Proc. Roy. Soc. 
(London) A220, 171 (1953). 

25 R. Berman, E. L. Foster, and J. M. Ziman, Proc. Roy. Soc. 
(London) A231, 130 (1955). 
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For n the scattering parameter T is for mass-
difference scattering alone. For other types of impurity 
scattering, such as that due to strain fields or changes in 
the elastic constants of the interatomic linkages due to 
the point imperfection, the form of T is changed, and 
in some cases the frequency dependence is altered as 
well.2'26 In this study the impurity scattering is due 
solely to the various isotopes present in the materials, 
and the mass-difference term will be the only one 
considered. 

Since three-phonon processes arise due to the an-
harmonic nature of the lattice energy and the discrete 
nature of the lattice structure, details of the dispersion 
of the phonon spectrum must be known in order to 
derive the relaxation times. Herring,4 in obtaining the 
expressions for N processes, has considered the crystal 
class explicitly so that the TN given in the Table are 
correct for the materials studied here but are not 
generally valid. A smooth transition from the low-
temperature to the high-temperature form of TN is also 
expected. 

Phonon dispersion is equally important for the 
i7-process relaxation times but the forms of ru normally 
are derived without this consideration.1-3 The form 
TTU shown in Table I is derived in Appendix A and 
holds for materials such as germanium and silicon in 
which the frequency of the transverse acoustic branch 
becomes independent of wave vectors at a point about 
halfway towards the crystal zone. The limit on the 
frequency represents the fact that the low-frequency 
phonons (co<a>i) seldom take place in processes in which 
the sum of the wave vectors is larger than a vector of the 
reciprocal lattice, a condition necessary for U processes.1 

For completeness, several other possible mechanisms 
should be mentioned. In semiconductors at low tempera­
tures there are several possibilities for scattering due to 
the electronic nature of the impurity centers. These 
mechanisms have been examined by several workers,27-30 

but in pure samples they are not expected to be im­
portant. 

At high temperatures there is the possibility of free 
electrons31,32 and holes contributing to the conductivity. 
This is not a lattice property but may be important in 
deducing the lattice conductivity from the measured 
values. We shall not consider this effect in this work 
except to remember that it may become important at 
the very highest temperatures; for example, near the 
melting point. 

The use of Eq. (5) to obtain the total relaxation time 
can be questioned due to the nature of the N processes. 
These questions are considered in Appendix B and in 

26 P. Carruthers, Phys. Rev. 114, 995 (1959). 
27 J. M. Ziman, Phil. Mag. 1, 191 (1956). 
2 8 1 . C. Pyle, Phil. Mag. 6, 609 (1961). 
29 R. W. Keyes, Phys. Rev. 122, 1171 (1961). 
30 A. Griffin and P. Carruthers, Phys. Rev. 131, 1976 (1963). 
31 B. I. Davydov and I. M. Shmushkevitch, Usp. Fiz. Nauk 24, 

21 (1940). 
32 P. J. Price, Phil. Mag. 46,1252 (1955). 

this work the relaxation times will be added reciprocally 
with TN considered simply another scattering mech­
anism. 

III. THE CALLAWAY APPROXIMATION 

Through various assumptions and approximations, 
Callaway5 has obtained the following integral expression 
for the thermal conductivity: 

reDlT x*ex(ex-l)~2dx 
K=CT* / +/c2, (6) 

Jo vb/L+ax±T*+ (Pi+fa)*?T* 
where 

\ 2 T T W W ' 

a = A (/e/#)Msotope scattering, & = B{(£/#^-three-
phonon scattering, i= 1 (U process), i=2 (N process), 
0 D = D e b y e temperature, K2=a correction due to the 
conservative nature of N processes.33 The assumptions 
needed to obtain this equation are as follows: (1) The 
sum over the phonon polarization has been set equal 
to three and an average phonon velocity v$ is used. 
(2) The TJST1 has been taken to be proportional to 
I\o2 , which is only valid for low-frequency longitudinal 
phonons.4 (3) ru~l has also been taken to be proportional 
to T3co2, a result which is neither a low-temperature nor 
a high-temperature approximation.3 (4) BD is usually 
taken to be the Debye temperature. While this is 
approximately the value of the longitudinal mode 
near the zone boundary, the transverse modes have a 
maximum of only one-third the Debye frequency for 
materials such as Ge and Si.16-18 (5) The relaxation times 
due to boundary scattering and impurity scattering are 
derived using average phonons for longitudinal and 
transverse branches. 

These approximations would suggest that the Cal­
laway equation pertains to longitudinal modes except 
that average velocities are used. Nevertheless, this 
equation has been used extensively, and successfully, 
to obtain values of K versus T. The agreement found 
between this equation and experimental data on silicon 
and germanium using only {B\-\-B^) as an adjustable 
parameter indicates that it is a reasonable approxima­
tion for temperatures from 1°K to just above the 
maximum in K. 

One important result of the integral formulation is 
that it shows clearly that each of the scattering mech­
anisms are operative over a large temperature interval. 
The effect of varying the coefficients A and (2?i+J52) can 
be seen from the calculations of Toxen8 and of Pohl,6 

respectively. Increasing A lowers the conductivity 
symmetrically about the maximum. Increasing B i+B2 

decreases the entire high-temperature part of the curve 

33 This term is generally neglected in numerical calculations 
Toxen (Ref. 8) has indicated the strength of the term at low 
temperatures. This term will be discussed more fully in Appendix 
B. 

file:///2ttW
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from just below the maximum. An increase in the 
boundary scattering term has been shown12 to decrease 
the curve from the lowest temperature to above the 
maximum. Thus, one cannot simply ascribe a tempera­
ture dependence in K to a single scattering process. 

A second result is that once the constants J3i+.£>2 
have been obtained for a material, the effects of im­
purities, boundaries, or any scattering mechanism 
operative at low temperatures can be investigated by 
simply varying the r& or n term in a computer program. 
This approach has been used extensively.6-15 

The Callaway equation appears to be a reasonable 
first step in obtaining qualitative fits to thermal con­
ductivity data at low temperatures. However, the 
assumptions and approximations are such that it should 
not be used without some caution and without some 
regard for its limitations. 

To explain the data above the Debye temperature, 
the high-temperature forms of the relaxation times are 
used in Eq. (4). 

TN~l+Tu-l= (D1+D2)T^= (al+a2)x^r. (7) 

From Eqs. (4) and (7), and with T>6D and neglecting 
boundary scattering; 

C 6D tan -1^ 

(71+72) T u 
u=-( ) . (8) 

T Yyi+72/ 

The constants D1+D2 can be related to the atomic 
mass, the Debye temperature and the Griineisen con­
stant.1 ,8'34 By using ZJi—Z^, Klemens has fit data on 
the lattice conductivity of copper-platinum alloys35 

and on germanium-silicon alloys.36 This method has 
also been used successfully in several other cases.7,34,37,38 

There are, however, two important facts which indi­
cate some inadequacies in the formulation at high 
temperatures: (1) The temperature dependence pre­
dicted by this theory is T~n, n<l, whereas in both 
silicon and germanium at temperatures from 200°K to 
well above the Debye temperature K is found to vary as 
2̂ -1.239,40 Thig temperature dependence cannot be 
achieved with this formulation. (2) In general, the 
temperature region which has K^T~n (n^l) persists 
well below the Debye temperature; for example, from 
200 to 1000°K in silicon (0^=658) and 150 to 950°K in 
germanium ( 0 D = 3 7 2 ) . This formulation does not 
predict that the slope remain constant to such low 
temperatures. 

One further point should be mentioned. In an equa­
tion of the form of (6), the upper limit is actually a 

34 B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, Phys. 
Rev. 125, 44 (1962). 

35 P. G. Klemens, G. K. White, and R. J. Tainsh, Phil. Mag. 7, 
1323 (1962). 

36 P. G. Klemens, Westinghouse Research Report 929-8904-R3, 
1961 (unpublished). 

37 J. E. Parrott, Proc. Phys. Soc. (London) 81, 726 (1961). 
38 B. Abeles, Phys. Rev. 131, 1906 (1963). 
39 G. A. Slack and C. Glassbrenner, Phys. Rev. 120, 782 (1960). 
40 G. A. Slack and C. Glassbrenner (to be published). 

frequency. If this equation correctly represents the 
thermal conductivity from low temperatures to above 
the maximum, it does so by indicating the behavior of 
the low-frequency phonons. This means that, at very 
high temperatures, Eq. (6) should still indicate the 
effects of the low-frequency phonons. However, Eq. 
(6), using the constants12 which would give a fit to the 
silicon data at low temperatures, predicts a value of 
conductivity at the Debye temperature of about 14% 
of that measured. That is, the low-frequency phonons 
still carry part of the heat at the Debye temperature. 
This suggests that a sum of terms, for example, Eq. 
(6) plus Eq. (8) should be used to calculate K correctly 
at high temperatures. 

IV. NEW FORMULATION 

Some of the objections pointed out in the last section 
are removed by taking into account the two types of 
polarization: 

K=KT+KL, (9) 
where 

CBTIT cTWex(ex- \)-Hx 
KT=i / = , (9a) 

JO TT l 

»e^TCLTWex(ex-l)-2dx 

and 
Jo 

(9b) 
TL 

i=:T,L;x= ho)/kT; 0f = kan/ft; C,= (k/2ir2Vi) (k/h)z. 

The subscripts T and L indicate transverse and longi­
tudinal so that in CT and CL the appropriate VT and VL 
are used. 

The relaxation times used are 

TT~1= vt/FL+A^+B^T^+TTu-1, (10) 

m/- 1 = iWco 2 / s in l i# , wi<a)<co2, 

TTU~l=0, C0<OH, 

TL-^vi/FL+Atf+BifiPT*. (12) 

(ID 

A is defined in Table I. The term KT can be again divided 
to give 

K= KTO+KTU+KL , (13) 
where 

=fW -
Jo v 

=fr3/ -
J HIT V 

Jo 

d^T CTx4ex(ex-l)~2dx 

h/LF+ax*T±+pTxT^ 

e*!T CTxAex(ex-l)-2dx 

HlT vb/LF+ax*T*+l3TuX2T2/smhx 

e*IT CLxHx{ex-\Y2dx 

b/LF+ax*T*+(3Lx2T*' 

(13a) 

, (13b) 

(13c) 

a and the /3's are defined as in Eq. (6). The iV-process 
term /3TXT5 was omitted from KTU- I t is too small to 
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contribute at low temperatures and at high tempera­
tures (T>02) it is expected to change to the form 
PT'XT2 (see Table I) . This is the same as the high-
temperature form of TTU so that it contributes nothing 
new to the analysis. A better expression for TTN which 
would cover the transition from the low- to the high-
temperature form would be very useful. 

The first term in Eq. (13) is the contribution of the 
low-frequency transverse modes, co<coi. The second 
term arises from the transverse modes with frequencies 
between o>i and o>2. The frequency at which the U 
processes start is coi and C02 is the highest transverse 
mode frequency. The third term represents the longi­
tudinal phonons. 

The Ci have been kept inside the integral in order to 
account for changes in the phonon velocities arising 
from the change in the density of phonon states as the 
frequency increases. This is important only for Eq. 
(13b). What we have assumed is that the velocity is 
constant at low frequencies and decreases abruptly at 
Mi. I t remains constant between coi and w2 and becomes 
zero above a>2. This is a reasonable approximation to the 
phonon spectrum16-18 (see Fig. 1). However, merely 
changing v in CT will not necessarily take into account 
the density of phonon states correctly. The dependence 
of CT on the velocity is obtained from three terms. The 
Boltzmann equation will give v2 as in Eqs. (1) and (2), 
and the transformation to co coordinates gives dq— zrWco. 
These velocities can be changed at a>i without difficulty. 
The density term f(q,\) in Eq. (3) gives a factor of 
v~2 at low frequencies, but is the troublesome term above 
ctii. I t is possible to fit/(g,X) to an w2 law between coi and 
C02,41 but the constant of proportionality will not be 
exactly v~~2. Thus, the velocity in CV(CO>OJI) should be 
v(o)>coi)/v2 where v2 is an average velocity which 
actually allows you to count states correctly. We have 
simply used []^(co>co1)]~

1 in CT in Eq. (13b). The error 
from this approximation can be considered a multipli­
cative constant in CT* However, the results indicate 
that Eq. (13b) is sensitive to only CT/PTU [see Eq. 
(17b)] at high temperatures and the total fit is not very 
sensitive to CT at low temperature. Thus, this error in 
CT does not significantly alter the results. 

There are a number of further assumptions implicit 
in these equations. One concerns the use of single-mode 
relaxation times and the absence of any terms repre­
senting effects of N processes on other scattering pro­
cesses. This is discussed in Appendix B. Another is the 
neglect of TLU, the U processes for the longitudinal 
modes, and all other possible scattering processes. A 
third concerns the form of the boundary scattering and 
impurity scattering terms. The velocities which appear 
in both Tb and n are average values, each a somewhat 
different type of average. I t would be possible to use 
Vi, i=T, L for the velocities in all cases, but this, in a 
sense, ignores the fact that scattering can take place 

41 Using the density function given by Phillips (Ref. 19). 

0 0.2 0.4 0.6 0.8 1.0 

Reduced wave number 2q/b 

FIG. 1. Phonon spectrum for silicon after 
B. N. Brockhouse, Ref. 17. 

from one mode to another. Thus, for lack of a better 
approximation, the same average value of vs is used in 
both relaxation times. The value used is 

v b~
x=v.-1** tiZvT^+vir1!. (14) 

The reason this form is used will be indicated in Sec. V, 
but for the case of silicon and germanium all the various 
averages (averaging second or third powers) gives 
approximately the same value of vs. 

V. COMPARISON OF THE FORMULATIONS: AN 
ANALYSIS OF GERMANIUM AND SILICON 

These equations can be integrated in the limits of 
high and low temperature, and their limiting forms are 
useful in obtaining numerical results. In the limit of low 
temperature (i.e., below 4°K) the new formulation can 
be expressed 

JC« (4/15)7r4{fCr+iCL}r&{l-167r4ar4} , (15) 

where pT and ($L terms have been neglected. The KTU 
term is negligible here. This expression is the same as 
the low-temperature limit of the Callaway equation5 if 
we substitute 

ICT+\CL=C. (16) 

This implies that the vs used in calculating C in the 
Callaway equation should be obtained as in Eq. (14). 

At low enough temperatures, the a term is negligible 
and the boundary scattering can be checked. In many 
cases, the r& term is adjusted slightly to give a good 
fit at the lowest temperature. 

At temperatures well above the Debye temperature 
where impurity scattering is small the new formulation 
can be expressed. 

K=KTQ+KTU+KL , (1-0 

JCro«fC rpiV(2j8r)r4] , (17a) 
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TABLE II . Parameters used in the analysis. 

Silicon Germanium Comments 

VT 

flr(co>wi) 

n * (theory) 
(exp) 

Oi 

e2 

6D 

A 
B1+B2 
D1+D2 
BT 
BTU 
BL 

(cm/sec) 
5.86X105 

8.48X106 
6.4 X105 

2.0 X105 

4.24X105 

0.716 cm 

(sec-1) 
0.895 X106 

1.16 X106 

(°K) 
180 
210 
570 
350 
658 

2.16X10-4 

1.32X10~44sec3 

3.8 XlO^secdeg" 3 

3.1 XlO-^secdeg"1 

9.3 X10-13deg-3 

5.5 X10~18sec 
2.0 X10^4secdeg"3 

(cm/sec) 
3.55X10* 
4.92 X106 

3.9 X106 

1.3 X106 

2.46X105 

0.24 cm 

(sec-1) 
1.64X106 

1.96X106 

(°K) 
101 
118 
333 
192 
376 

5.72 X10"4 

2.40X10~44sec3 

2.8 X10~23secdeg-3 

5.8 XlO-^secdeg-1 

1.0 
5.0 

X10~ndeg-3 

X10~18sec 
6.9 XlO^secdeg" 8 

(a) 
(a) 

Eq. (17) 
(b) 
(b) 

(c) 

F~0.8(d) 

(b) 
(b) 
(b) 
(b) 
(b) 

Eq. (6) 
Eq. (8) 

a From elastic constants of H. J. McSkimin, J. Appl. Phys. 24, 988 (1956). 
b Silicon values from Ref. 17; germanium values from Ref. 16. 
0 The germanium sample was actually larger than this, but contained several grain boundaries. This value of L was obtained by comparison to several 

other smaller samples which had the same conductivity at 4.2 °K. 
d A value of F =0.8 would be predicted from the width to length ratio of the samples. See Refs. 24 and 25. 

2(CT'\\ ( 0 2 2 - 0 I 2 1 a 025-0i6] 

\fiTu/T[ 2 Sfirn T J 

KL^iCLMLT*) , 

CT is CT calculated using VT (cor>coi). 

(17b) 

(17c) 

The expansion of Eq. (8) at the same temperature 
gives 

C 1 | 
K — 

(T1+72) 2l_ r \ Y i + 7 2 
-\eD-l-(-^-)\ (is) 
1 r \ 7 i + 7 2 / J 

At this temperature, KTQ is usually negligible and KL is 
only a few percent. Thus, KTU dominates and gives a 
T~l temperature dependence if the a term is small. 
Equation (18) also gives a T _ 1 temperature dependence, 
if the a term is again small, but there are three im­
portant differences: (1) The Debye temperature 6D is 
not the important parameter in KTU and (2) as the 
temperature decreases KTU eventually becomes very 
small. There is no such cutoff provision in Eq. (8). 
(3) Since KL increases as T decreases, the temperature 
dependence of the total K'S in Eq. (17) is greater than 
T-K 

The parameters used in the analysis are listed in 
Table I I . The B's and D's are obtained from the curve 
fitting and r& is also adjusted to fit the low-tempera­
ture data. (The Tb obtained experimentally is actually 
very close to that obtained using the length to width 

correction.24,25) Figure 1 shows the phonon spectrum of 
silicon18 and indicates the position of the frequencies 
used in the analysis. The germanium spectrum is very 
similar. The values of a>i were obtained by assuming 
that the phonon spectrum is isotropic.17,19 The actual 
anisotropy certainly could alter these frequencies 
slightly. This would also alter the values of i>» obtained 
near coi and co4. The results are fairly insensitive to 
variations in C03 and C04. 
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FIG. 2. Thermal conductivity of silicon. 
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A fit of the data on high purity silicon using the Calla­
way equation is shown in Fig. 2. The experimental 
data are taken from Holland and Neuringer12 (1.7 to 
300°K), and Slack and Glassbrenner40 (300 to 1683°K). 
The two sets of data agree within two percent at room 
temperature. A fit at high temperature, obtained from 
Eq. (8), is also shown. The value of (D1+D2) is ob­
tained from the 1000°K data using Eq. (18). 

In Fig. 3, the same silicon data are fit using the new 
formulation. Each contribution is shown. The value of 
KTU is obtained from the 1000°K data using Eq. (17b). 
KL is then obtained from the data near room tempera­
ture with the value of KTU taken into account, KTO will 
be insignificant at 300°K. KTQ is then obtained from the 
best fit for the low-temperature data with KTU and KL 
taken into account. This procedure may seem somewhat 
arbitrary but the important point is that the data can 
not be fitted over the complete range 1.5 to 1300°K if 

60, 
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FIG. 3. Thermal conductivity of silicon. Solid lines 
are the new analysis. 

any one of the three terms is omitted, even if the con­
stants C, a, and 0 are all varied. (C and a should only be 
varied by changing vt so that they were not changed 
by more than an order of magnitude.) 

In Fig. 4 the new analysis is used to fit data on 
germanium. The experimental data are taken from 
Slack and Glassbrenner39'40 (200 to 900°K) and Hol­
land42 (1.7 to 200°K). The value of KTU is obtained from 
the 700°K data; r& is adjusted to fit the data at 2°K 
and KTO and KL are obtained as for silicon. 

From Figs. 3 and 4, it is obvious that the agreement is 
excellent over a very large temperature range. In 
both cases, the poorest fit occurs in the region in which 
KTU has its maximum as might be expected since the 
values here are highly sensitive to coi which is one of the 
least accurately determined parameters. 
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42 M. G. Holland, Bull. Am. Phys. Soc. 8, 15 (1963). 

FIG. 4. Thermal conductivity of germanium. Solid lines 
are the new analysis. 

At high temperatures the analysis predicts the change 
in slope found in the experimental data near 1000°K 
for silicon and near 700°K for germanium. It has previ­
ously been suggested39 that this is due to the onset of 
an electronic contribution to the thermal conductivity. 
The present work suggests that it is in part due to the 
dying out of the longitudinal mode contribution. 

It appears possible to fit data on various materials 
even if the high-temperature results are not available. 
For example, for germanium, it was found that KL is 
insensitive to the choice of BL for r<20°K. Thus, once 
Tb is determined from Eq. (15), a value of BT can be 
chosen to make the curve fit up to 20°K. Since KTU does 
not become important till about*40°K?!,the value of BL 
can be chosen to make KTO+KL fit the data up to 40°K. 
Then BTu can be picked so that the curve can be fitted 
up to higher temperatures. This approach is not 
expected to give as good a fit. 

As a further check on this new analysis the data on 
isotropically pure germanium were fitted. The value of 
T was calculated from the isotropic constituents given 
by Geballe and Hull43 and a value of r J s=3.68X10-5 

was obtained. Since this value of V is about 15 times less 
than that for normal germanium, the value of a was 
decreased by that factor; all other constants remaining 
unchanged. The fit is shown in Fig. 4. r& was adjusted 
slightly to improve the low-temperature fit. 

The fit is very good below 50°K but the experimental 
points are lower than the theoretical curve above 50°; 
the range in which three-phonon scattering is im­
portant. It is quite possible that the phonon frequencies 
co i and co2 are influenced by the absence of isotopes in 
the material. This effect is expected to be small, varying 
about as M~* where M is the average mass.44 It is also 
possible that the perturbation of the frequency spec-

43 T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958). 
44 A. A. Maradudin, G. H. Weiss, and D. W. Jepsen, J. Math* 

Phys. 2, 349 (1961). 
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trum will cause a variation in the strength of the three-
phonon processes and the indication from these results 
is that the relaxation times should be increased slightly 
in isotropically pure material. This result was also noted 
by Toxen8 and Abeles et alP for the germanium-
silicon alloys. This effect has been calculated by Car-
ruthers.45 

In order to check the range in which the new formu­
lation and the Callaway equation agree, the impurity 
scattering parameter a was increased by a factor of 3 in 
both Eqs. (6) and (13). The results for silicon are shown 
in Fig. 5. This indicates that the Callaway equation is 
quite adequate for examining impurity effects to tem­
perature somewhat above the maximum as long as 
there is not too much significance attached to the 
parameter (B1+B2). 

VI. CONCLUSIONS 
We feel that the importance of this work lies in the 

attempt to use the known phonon spectrum in order to 
divide the heat flow into that due to longitudinal and 
transverse phonons. There are several adjustable 
parameters in these equations so that the analysis is, 
to some extent, phenomenological. However, we have 
not found it possible to fit the high-temperature data 
with only one integral and the use of two or more 
integrals cannot be justified without considering two-
mode conduction. 

Germanium and silicon have proved to be of great 
use in this work because of their very dispersive phonon 
spectra. Without this the simple expression for rTu 
could not have been obtained and the excellent fits 
could not have been made over such a large range of 
temperature. 

For materials which do not have a transverse phonon 
branch with as much dispersion as silicon or germanium, 
one expects that the form of TTU would not be accurate 
over the complete temperature range. In this case the 
analysis near and above the maximum must be 
handled more carefully. However, one would still 
expect that U processes should die out at low enough 
frequencies so that a separation into three equations 
should have some validity. 

The high-temperature expression for rTu is still 
expected to hold. Now, however, there is provision for 
the temperature dependence of the thermal conduc­
tivity to be greater than or less than T~l since this will 
depend on the relative number and the relative scatter­
ing probabilities of longitudinal and transverse modes. 

There are cases in the literature in which the type of 
analysis presented here might explain apparent diffi­
culties. Callaway and von Baeyer,7 in attempting to 
fit the data on isotope scattering in LiF, found it neces­
sary to include an exponential dependence in nr1 to 
fit the results between 55 and 80°K, well above the 
maximum. However, this exponential is inconsistent 
with the value of ru~l needed to fit the data near the 

45 P. Carruthers, Phys. Rev. 126,^1448 (1962). 

100 200 

FIG. 5. The effect of increased impurity scattering on the 
analysis of the thermal conductivity of silicon. The circles are 
from the Callaway equation. 

maximum. A formulation of the type presented here 
would eliminate this problem since the KTU term, which 
contains the exponential, would not contribute much 
near the maximum. 

Parrott,36 after attempting to fit high-temperature 
data on germanium-silicon alloys, has concluded that 
the high-temperature heat flow is due primarily to 
transverse phonons. This result is also predicted by our 
approach. 

The analysis presented here has the advantage that 
it is, in principle, a simple extension of existing theories 
and that it is physically quite plausible. There are 
several other possibilities that might be considered for 
lattice conduction, depending on the materials studied. 
Some of these are: (1) U processes for the high-
frequency longitudinal modes,1 (2) optical-mode con­
duction and scattering at high temperatures,37 and 
(3) the addition of four-phonon processes at high 
temperatures.39,46 There are also the questions of the 
validity of the single-mode relaxation times, the need 
for terms representing the influence of N processes on 
the other scattering times and scattering between 
modes. However, it appears that two-mode conduction 
is a more important consideration. 

At low temperatures in the Debye region, two-mode 
conduction can be adequately represented by consider­
ing one average phonon. Thus, in the impurity scatter­
ing and boundary scattering regions, this analysis and 
the Callaway analysis give essentially the same results 
so that the simpler Callaway form is quite useful in 
studying impurity and boundary effects. 

*«I. Pomeranchuk, J. Phys. (USSR) 7, 197 (1943). 
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APPENDIX A: UMKLAPP-PROCESS 
RELAXATION TIME 

In a general approach to the relaxation time due to 
U processes, Klemens1'3 has obtained an expression 
which can be written 

Xh (ex-l) 
TU~1=- E Aqq>q» - -, (Al) 

subject to 

and where 

^ • q (ex'—l)(ex-(Tx') 

Aco = c o + a / + a / ' = 0 (A2) 

q+q'+q"=b, (A3) 

Aqq.'q." CCCOo/o/ ' . 

Since ^ -b<0 and .̂*q is proportional to co we have 

(e*-l) 
TU 1 OC E w'co" . 

Q'Q" (ex'—l)(ex-e-x') 

We first consider the interaction T+T—>L, that is, 
(co, q) and (oo'q') are transverse (T) modes and (a)",q") 
is a longitudinal (L) mode. We then obtain, by changing 
the sum to a surface integral in co space and recalling 
condition (A2), 

TTU -1 oc L 'a 
ex-l dS' 

(A4) 
(ex'-l)(ex-e-x/) VQ(Aco) 

If now we examine Fig. 6, the phonon spectrum for a 

»{: 

Wave number q 

FIG. 6. Phonon spectrum showing the zone boundary (0.5b) 
and the extension into the second zone. 
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FIG. 7. Phonon spectrum showing construction needed to 
provide the interacting surface. 

material such as silicon or germanium,16'17 we see^that 
co'̂ -co and since Ao>=0, a/'~2co. [—o)(—q) — o)(+q) in 
the usual normal mode notation.] Thus, we have 

(.e-

co2 r 

''~e~x) J 
dSf 

) J VgAw 
(A5) 

The surface integral can be obtained from geometrical 
considerations. Since co~co'=a>"/2 and since transverse 
modes, which are interacting, are on the flat section of 
the dispersion curves we can represent the q's as shown 
on Fig. 7. 

The surface is then of the form, 

3 T T 6 A | K)/ - - I . • J 
(A6) 

where we have approximated (b~qf/)^^b} and q 
= (5/4)+A. This shows that 5 = 0 for q^b/4, or «=«i . 
From Fig. 7 it is clear that once q is slightly larger than 
qi(~ty£) the surface area increases quickly. Thus, 
there will be a frequency dependence in 5 near #i(o>i) 
but it will be very weak as soon as q is slightly larger 
than qi. This frequency dependence will be neglected 
here. 

The VQ(Aco) will be approximately VL (at a/') so 
that the form of TTIT1 is as given in Table I. 

The interaction T+L-^L should also be consid­
ered. This interaction might be expected to give 
U processes for all the transverse mode frequencies. 
However, for germanium and silicon it is found that 
these processes would also not begin until cu>coi. At 
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higher frequencies the strength of this term will be less 
than the T-\-T—^L term by a factor of e~l0/e*. Since 
all other terms in the scattering probability are about 
the same, this term is neglected. 

The form of TTV~X is still an approximation in the 
sense that the frequency dependence is not clear cut; 
however, it is a reasonable approximation. 

In a physical sense, a relaxation time of the form 
rN~1==Bco2Ts used in the text for longitudinal modes, 
may already take U processes into account. N processes 
of the form L+T-^L will change low-frequency 
longitudinal phonons to high-frequency longitudinal 
phonons. I t is only these high-frequency longitudinal 
phonons which can U scatter. Now, if the scattering 
probability is very large for these high-frequency 
phonons to umklapp scatter they will not remain in this 
high-frequency state very long. However, the limiting 
process which will determine the umklapp relaxation 
time will be of the form co2T3 which describes the oc­
cupancy of the high-frequency state from which the 
phonon is scattered. 

To see the inadequacy of an umklapp scattering time 
of the form Bu>2Tz, we look at Eq. (A4). Klemens,3 

in deriving ru~l, used the conditions 

pressed1 

| c o | + | c o ' j + \o)"\~0)D, (A7) 

(A8) 

He then made the approximations x<Kl and xf^>l in 
Eq. (A4) and obtained 

TU ~1^co2T3 / xn :'dx, 

TU~1 ccco2rv-^r, 

(A9) 

(A10) 

where a depends on the limits of integration which in 
turn depend on the phonon spectrum. If aT is very 
small with respect to ha)', the exponential should appear 
in TU- However, if aT is large with respect to #co', the 
results would be 

Tu-iKcfiTSD*, (All) 

which is the typical high-temperature form of ru"1-

APPENDIX B: TOTAL RELAXATION TIME 

N processes play a special role in thermal conduction 
since they are the only momentum-conserving scatter­
ing processes. N processes cannot cause thermal resist­
ance in themselves, but can transfer momentum from 
one part of the frequency distribution to another 
thereby influencing the other scattering processes. 
Because of this coupling, it may be expected that the 
addition of reciprocal relaxation times is not a good 
approximation. Klemens has shown that in the presence 
of N processes, the total relaxation time can be ex-

T(CO) = 

T'(tt)[Ty(co)+\(q>)] 

T'(O)) + TN(U) 
(Bl) 

where rN (co) is the (single-mode) relaxation time due to 
N processes, rf (a?) is the relaxation time due to all other 
processes and X(co) is an appropriate average value of 
r(co') for the modes co' which are linked to mode co by 
N processes. Klemens,35,36 indicates that the term 
T'\/(T'+TN) can be neglected in general, unless point-
defect scattering is weak compared to U processes, but 
in this case N processes turn out to be unimportant. 

Callaway, on the other hand, obtained an integral 
expression for X (/3 in Ref. 5) by assuming it independent 
of co. In this way, he obtains a correction term for the 
thermal conductivity 

K=Kl+K2, (B2) 

where /ci is Eq. (6), and 

/C2=C(/2 2 / / 3 ) , 

O'/T - . ^AfiX 
with 

• / . o TN(e*-l)2 

S'IT 

-dx, 

CB3) 

(B4) 

r9IT Tc/1 1 \ * V 
/ s = / —( ) dx. (B5) 

Jo rN\Tc TN/(ex— 1) 

Now consider the situation T very high, 0' very low. 
That is, the high-temperature contribution of the low-
frequency modes (co<co'=&0'/#). If 0' is low enough, 
one expects the conservation conditions will not allow 
U processes for the frequencies co<co'. In this case we 
obtain 

/ / • ( B 6 ) 
K 2 = G - — / 

aLJ o 

Where the terms are defined in Eq. (6) and £2 is for 
N processes alone. (Callaway's Z?i=0). Solving this we 
obtain 

K2 = 

1 1 1 1 r C F 1 / tan-W"l / r l 1 1 1 / tan-^xn 

L62T*uk u / J / L 5 3u2 i A u / J ' 

where u= (d'/T) (a/fcT)*. When u is small this becomes 

'C\/6'\7 / 3 
K2 -©QH'-i")' <B8) 

Thus, this term becomes very large due to u~2. If we 
use values of a, 0, and C consistent with the low-
temperature fits on silicon,12 and take 0'^2OO°, this 
term is several orders of magnitude higher than the 
measured conductivity at r ~ 5 0 0 ° K . 
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Physically this means that even when there is no 
divergence in the calculated K at low temperatures due 
to a lack of U processes (boundary scattering will make 
the integrals converge) the low-frequency modes would 
cause extremely high conductivity at high tempera­
ture. Thus, we deduce either KI does not properly take 
the coupling of N processes into account or the value 
Tjsf"1 used in this work does not represent solely N pro-

INTRODUCTION 

IT has been shown experimentally that activation 
energies for the diffusion of impurities at near-zero 

concentration in a given solvent may be considerably 
different from the activation energy for self-diffusion 
of the solvent. In 1954, Lazarus1 proposed a theory of 
impurity diffusion based on the electrostatic inter­
actions between the impurity ion and the neighboring 
vacancy and solvent atoms. This model was based on 
the picture of an impurity of charge Z dissolved in a 
metal and screened by the conduction electrons. The 
resulting potential distribution around the impurity 
was assumed to be described by the linearized form of 
the Thomas-Fermi equation. The change in energy of 
vacancy formation was considered to be the change in 
the lattice binding energy of a nearest neighbor in the 
screened potential of the impurity atom. The change in 
the energy of motion was viewed as a corresponding 
change in the appropriate elastic constants. This theory 
predicted that the activation energy for impurity dif­
fusion should be less than solvent self-diffusion for 
electropositive impurities and greater for electronega­
tive impurities. 

Although fair agreement between theory and experi­
ment was found for electropositive impurities diffusing 

* This work was performed at Argonne National Laboratory 
under the auspices of the U. S. Atomic Energy Commission. 

1 D. Lazarus, Phys. Rev. 93, 973 (1954). 

cesses for the longitudinal modes (as indicated at the 
end of Appendix A). 

For the case of the transverse modes we have indi­
cated TU~1^>TN~1 at temperatures above the maximum, 
in this case *2, would be negligible. 

These considerations lead us to use the Klemens ap­
proach in which Eq. (Bl) reduces to Eq. (5) and N 
processes are simply an added scattering mechanism. 

in copper and silver,2 for electronegative impurities 
(iron, cobalt, and nickel in copper,3 ruthenium in silver,4 

and platinum in gold5) only the sign of the activation 
energy difference was predicted correctly. 

An alternative theoretical derivation of the difference, 
AQ, between the activation energies for impurity dif­
fusion and solvent self-diffusion has recently been pro­
posed by LeClaire.6 The change in energy of vacancy 
formation was calculated in the same manner as in the 
Lazarus treatment, but the change in energy of motion 
was considered to be the difference in electrostatic 
energy between the configuration corresponding to the 
impurity atom at the saddle point and that with the 
impurity at the equilibrium lattice position. LeClaire 
used the more accurate numerical solution of the 
Thomas-Fermi equation as calculated by Alfred and 
March,7 and also took into account the temperature 
dependence of the correlation factor, / , for impurity 
diffusion. 

LeClaire's theory provided improved agreement with 
experiment for the electropositive impurities, although 

2 D. Lazarus, Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1960), Vol. 10. 

3 C. A. Mackliet, Phys. Rev. 106, 1964 (1958). 
4 C. B. Pierce and D. Lazarus, Phys. Rev. 114, 686 (1959). 
5 A. J. Mortlock, A. H. Rowe, and A. D. LeClaire, Phil. Mag. 

5, 803 (1960). 
6 A. D. LeClaire, Phil. Mag. 7, 141 (1962). 
7 L. C. R. Alfred and N. H. March, Phys. Rev. 103, 877 (1956). 

P H Y S I C A L R E V I E W V O L U M E 1 3 2 , N U M B E R 6 15 D E C E M B E R 1 9 6 3 

Diffusion of Palladium in Copper and Silver* 
N. L. PETERSON 

Argonne National Laboratory, Argonne, Illinois 
(Received 1 August 1963) 

The diffusion of palladium in single crystals of copper and silver has been measured by the tracer-sectioning 
technique. The results are 

£>pd->cu= 1.71+o0;ii e x p [ - (54 370db300)/i?r] cm2/sec, 
and 

Z>Pd^Ag=9.57il:8
6
7
3 exp[ -56 750db300)/i?r] cm2/sec. 

The difference between the activation energies for Pd diffusion and self-diffusion in copper and silver is in 
only qualitative agreement with the theories of Lazarus and LeClaire. Correlation factors for palladium 
diffusion in silver are calculated using Lidiard's theory and the data on silver diffusion in palladium-silver 
alloys by Nachtrieb et al. From these correlation factors and Manning's theory, it is shown that palladium 
atoms repel vacancies in silver. This is in disagreement with the quenching studies of Hamaguchi. 


